

SUSTAINABLE PRODUCTIVITY OF CROPS AND THE EFFICIENT USE OF NUTRIENTS

SUSTAINABLE PRODUCTIVITY OF CROPS AND THE EFFICIENT USE OF NUTRIENTS

Essential elements to plants

Watter 90 to 95% of fresh matter

macronutrients 0.5 to 100 g.kg⁻¹

micronutrient <500 mg g⁻¹

BRAZIL: POWER WORLD AGRICULTURAL

PRODUCT	PRODUCER	EXPORTER
Coffee	1 º	1 º
Sugar cane	1 º	1 º
Orange juice	1 º	1 º
Meat	1 º	1 º
Soya complex	2 °	1 º
Poultry	2 °	1 º
Cotton	6 º	3 º

SOURCE: FAO/USDA, MAPA

Foreign Trade

Exporter to 212 DESTINATIONS

FOOD

2014 BRAZIL

DEVELOPMENTS IN PRODUCTION AND AREA PLANTED TO GRAINS IN BRAZIL

Source: CONAB, Agro MD

Geographic Extent and Principal Limitations for Regions Soil Acids, Infertile in Tropical America (Sanchez & Salinas, 1981)

LIMITATIONS	MILLIONS ha	% OF TOTAL AREA		
PHYSICAL				
Lack of Rain (> 3 months)	299	29		
CHEMICAL				
P deficiency	1002	96		
Effective low CEC	577	55		
Zn deficiency	645	62		
High P fixation	672	74		

Chemical Characteristics of 518 Samples of Soils under Cerrado in Brazil (Lopes, 1975)

Chemical Characteristics	Critical Level	Low the Critical Level (%) (A)
pH (H ₂ O)	5.0	48
Ca exc. (cmol _c .dm ⁻³)	1.5	96
Mg exc. (cmol _c .dm ⁻³)	0.5	90
Al exc. (cmol _c .dm ⁻³)	0.25	91 ^(B)
P sol. (mg.kg ⁻¹) ^(C)	10	99
Zn sol. (mg.kg ⁻¹) ^(C)	1.0	95

- (A) According to laboratory soil analysis for Minas Gerais.
- (B) Above the critical level (%).
- (C) Extracted by HCI $0.05 \text{ N} + \text{H}_2\text{SO}_4 \ 0.025 \text{ N}$.

Exchangeable magnesium in the 0-30 cm layer

Exchangeable magnesium in the 0-30 cm layer.

Regions with identified magnesium weaknesses

Consumption of fertilizers and lime in Brazil

Relation of consumption of fertilizers and lime in Brazil

The importance of magnesium in mineral plant nutrition

Relegated importance of Mg

Widespread deficiency

More careful in fertilization with Mg

Essential nutrient:

Photosynthesis

Enzyme activity

Carbohydrate transport

Stability of ribosomes

Resistance to toxic aluminum

CO, fixation

Use the stored energy

Improves the absorption of phosphorus

Resistance to diseases

Well nourished plants → more resistance, because the metabolism is running smoothly

Photosynthesis energy is required for some defense mechanisms

Mg excess may cause indirectly diseases such as blossom end rot in tomatoes

Resistance to diseases

Carbohydrates in the leaves can attract pathogen

Chelating molecules glyphosate

Fighting pastures tetany in ruminants

In relation to human nutrition, protects against cardio-vascular disease, diabetes and stroke

May help fight high human intake of sodium (Na)

SUSTAINABILITY

SUSTAINABILITY THE TRIPLE BOTTOM LINE

Source: Report Brundtland (ONU, 1987)

Plant Biochemistry

Reactions complex system in which the minerals are essential

Participate in composition, regulation and catalysis

Tissue reactions and products

SIMPLIFIED SCHEME OF PRODUCTION OF ORGANIC SUBSTANCES IN PLANTS

SIMPLIFIED SCHEME OF PRODUCTION OF ORGANIC SUBSTANCES IN PLANTS

Plant Biochemistry

An example:

nutrients in the reactions

photosynthesis

Light reactions of photosynthesis - nutrients

Plant Biochemistry

 Problems in mineral nutrition cause chain reaction of damage to the operation of the plant:

"You Cannot Build Peace on Empty Stomachs..."

John Boyd Orr (First FAO Director General)

Norman Borlaug

Father of the Green Revolution
Nobel Peace Prize 1970

The game ended without fertilizer