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Witnessing a historical warm up!

 Since 1800’s 16 warmest years occurred since 1990

 May be the warmest years of the last millennium (according
to modeling data)

e Confirming evidence: phenological spring comes 6 days earlier
and autumn is delayed 5 days in the northern hemisphere
than it did in 1959

* Seal level rise is now 3 cm per decade
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Map showing difference in surface temperature in 2006 compared to 1951-
1980 average. Most of the globe is anomalously warm, with the greatest
temperature increases in the Arctic Ocean, Antarctic Peninsula, and central Asia.



What is the cause of warm up?

* Natural events unable to explain the cause of global warming

e Most plausible explanation: warming is mainly due to
increasing human-made greenhouse gases

* Greenhouse gasses: gasses that absorb infrared radiation
(carbon dioxide, methane, nitrous oxide, chlorofluorocarbons,
tropospheric ozone)

* Infrared Radiation: Radiation with longer wavelengths than
visible light, but shorter wavelengths than radio waves. Most
of energy absorbed by Earth is radiated as infrared radiation
(which greenhouse gasses can absorb)

e Radiative Forcing: Capacity of a gas to affect the balance of
energy entering and leaving the Earth (measured by W/m?)



Radiative Forcing Components
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PARTS PER MILLION
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Atmospheric CO, at Mauna Loa Observatory

*The Mauna Loa Observatory: atmospheric
research facility continuously monitoring
atmospheric change since the 1950's.

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory

* The undisturbed air, remote location, and
minimal influences of vegetation and human
activity are ideal for monitoring constituents
in the atmosphere that can cause climate
change.
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Global CO_ emissions per region from fossil fuel use and cement production
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* Global CO, emissions increased by 3% in
2011, reaching an all-time high of 34
billion tonnes in 2011

* With a decrease in 2008 and a 5% surge
in 2010, the past decade saw an average
annual increase of 2.7%

*The top 5 emitters are China (29%), the
United States (16%), the European Union
(EU27) (11%), India (6%) and the Russian
Federation (5%), followed by Japan (4%).

CO_ emissions per capita from fossil fuel use and cement production in
top 5 emitters
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*In 2011, China’s average per capita CO,
emissions increased by 9% to 7.2 tonnes,
reaching EU values (EU saw a decrease of 3%)

* United States was still one of the largest CO,
emitter with 17.3 tonnes per capita after a
steep decline by the recession in 2008-2009,
high oil prices compared to low fuel taxes and
an increased share of natural gas.



CO, concentration (ppm)
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Sources of Increasing Greenhouse
Gasses

e Carbon dioxide (CO,): Burning carbon-containing fossil-fuels
(coal, oil, natural gas), land conversion (logging of tropical
forests, wild fires)

* Methane (CH,): Oil and natural gas production,
decomposition of carbon-containing material by anaerobic
bacteria (cattle production, rice paddies, land-fill)

e Nitrous oxide (N,0): Industrial processes, land use conversion,
N-fertilizer use in agriculture



Sources of CO, Emissions

Mass of carbon dioxide emitted per quantity of

Seven main fossil fuel Contribution energy for various fuels!20]
combustion sources (%) co, co,
Liquid fuels (e.g., gasoline, fuel oil) 36% Fuel name ¢+ emitted ¢ emitted ~
(Ibs/10% Btu)  (g/10% J)
Solid fuels (e.g., coal) 35%
Coal (anthracite) 227 97.59
Gaseous fuels (e.g., natural gas) 20% Petroleum coke 995 96.73
Cement production 3 % Coal (lignite) 215 92.43
Flaring gas industrially and at wells <1% Coal (sub-bituminous) 213 91.57
Non-fuel hydrocarbons < 1% Coal (bituminous) 205 88.13
"International bunker fuels" of transport 4.9 WOOd Iand W?Od waste 19 83.83
not included in national inventories e LEE e
Fuel ol 161 69.22
Kerosene 159 68.36
Automobile gasoline 156 67.07
Aviation gasoline 153 65.78
Liquefied petroleum gas 139 59.76
Propane 139 59.76

Natural gas 117 50.30



Background:
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e Elevating [CO,] can be
advantageous: PS and growth
rate (particularly in C; plants) can
be positively affected (Ainsworth,
2007; Taiz and Zieger, 2006;
Bloom et al., 2010)

 Long-term studies: all nutrients
should be in ample quantities to
get higher yields and quality from
crops cultivated under elevated Liebig's law of the minimum:

[COZ] (Leakey, 2012) "The availability of the most
abundant nutrient is only as

good as the availability of the

least abundant nutrient."
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Background:

« Among factors influencing growth rate and yield
under elevated [CO,], efficient transport of
photosynthesis products towards growing tissues
(phloem export) has crucial importance

* The bottle neck in phloem export arises from the
unmatched phloem loading rate compared to the
production rate of carbohydrates (CH) which may
exceed plant demand (sink activity) under elevated
[CO,] conditions

* Mg has a key role in phloem loading of
carbohydrates (Cakmak et al., 1994)



Hypothesis:

Under an elevated [CO,] environment...

() does inadequate Mg nutrition exacebrate CH
accumulation and thus

(i) cancel out the PS gain?



Experimental:

e Plant species: Durum wheat (Triticum durum, cv.
Saricanak 98)

Mg supply: adequate Mg (1000 pM) and low Mg
(75 pM)

e Growth conditions: in nutrient solution and under
two different atmospheic CO, levels (ambient: 400
umol mol- and elevated: 700 pmol mol-1)

 Measured parameters: gas exchange, chlorophyl,

carbohydrate, specific wt. (all measured in 2nd
oldest leaves), biomass production and [Mg] In
whole plant parts.
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Effect of Mg and CO, treatments on shoot and root

biomass production

Treatment Shoot Dry Weight Root Dry Weight
(mg plant1) (mg plant1)
Ambient CO, Adequate Mg 2305 B 98 +4 B
Low Mg 157 £ 13 C 51+6 C
Elevated CO, Adequate Mg 263 + 38 A 107 + 8 A
Low Mg 149 + 12 C 42 + 3 D
LSD (0.05) 22 5
CV(%) 12 7

F Test

* %k 3k

* 3k 3k
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Effect of Mg and CO, treatments on shoot and root
biomass production

Treatment Shoot Dry Weight Root Dry Weight
(mg plant?) (mg plant?)
Ambient CO, Adequate Mg _ 5 B 4 B
Low Mg 157 £ 13 C 516 C
Elevated CO, Adequate Mg 38 A 8 A
Low Mg 149 + 12 C 42 + 3 D
LSD (0.05) 22 5
CV(%) 12 7

F Test * % % * % %




Effect of Mg and CO, treatments on shoot and root

biomass production

Treatment Shoot Dry Weight Root Dry Weight
(mg plant?) (mg plant?)
Ambient CO, Adequate Mg 2305 B 98 +4 B
Low Mg (s57x13 ¢ (5126 ¢
Elevated CO, Adequate Mg 263 + 38 A 107 + 8 A
Low Mg 12 C 3 D
LSD (0.05) 22 5
CV(%) 12 7

F Test A

%k 3k 3k
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Effect of Mg and CO, treatments on shoot and root Mg

concentration

Treatment Shoot Mg conc. Root Mg conc.
(mg kg)
Ambient CO, Adequate Mg 1526 £ 54 1687 + 79

Low Mg 459 + 5 851 + 46 D
Elevated CO, Adequate Mg 1559 £ 91 1829 + 24 A
Low Mg 480 + 18 1009 £ 51 C

LSD (0.05) 51 56

CV(%) 5 4

F Test

* %k k

* 3k 3k
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Effect of Mg and CO, treatments on shoot and root Mg

concentration

Treatment Shoot Mg conc. Root Mg conc.
(mg kg?)
Ambient CO, Adequate Mg 1526 £ 54 1687 + 79

Low Mg 459 + 5 851 + 46 D
Elevated CO, Adequate Mg 1559 £ 91 1829 %24 A
Low Mg 480 £ 18 1009 # 51 C

LSD (0.05) 51 56

CV(%) 5 4

F Test

* %k k

* 3k 3k
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Changes in chlorophyll concentration and photosynthesis
rate as affect by Mg and CO, treatments
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Changes in chlorophyll concentration and photosynthesis
rate as affect by Mg and CO, treatments
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Changes in chlorophyll concentration and photosynthesis
rate as affect by Mg and CO, treatments
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Stomatal conductance

Changes in stomatal conductance and transpiration rate
as affect by Mg and CO, treatments
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Carbohydrate concentration

Leaf carbohydrate concentration and specific weight as
affect by Mg and CO, treatments

(mg gl DW)
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Carbohydrate concentration

Leaf carbohydrate concentration and specific weight as
affect by Mg and CO, treatments

(mg gl DW)
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Conclusions:

In plants with low Mg nutrition, an elevated
[CO,] environment...

e does not improve biomass production

ecan reduce root dry matter production
(root length?)

e does not increase PS rate or chlorophyll
concentration

e iIntensifies CH accumulation and specific
wt. of source leaves
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Challenge:
Would you invest
on Mg to benefit
GCC?

Climate stability

Dt
Dt

Elevated [CO,]
Increased PS and
CH accum.

Y- Y-
Low Mg

Bt
¥

¥

Accum. of CHs in
source leaves

Efficient phloem
loading of CHs

Enhanced biomass
production

Inhibition of PS and
sink activity
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