2nd International Symposium of Magnesium Magnesium in Crop Production, Food Quality and Human Health

4-6 November 2014, São Paulo, Brazil

Within-Species Genetic Variation in Leaf **Magnesium Concentration in Forage Grasses**

Beth Penrose, Edward J.M. Joy, Diriba B. Kumssa, Cathy Thomas

Institute of Biological, Environmental and Rural Science

E. Louise Ander, Nick A. Beresford, Neil M.J. Crout, Neil S. Graham, J. Alan Lovatt, Sue Walker, Michael Watts, Philip J. White, Scott D. Young, Martin R. Broadley

Google

🖸 💁 🛛 🛛 🛠 🖉 🍼 🏜 🥩 🚦 🖾 🖴 📖 🤤

Image NASA Image © 2007 TerraMetrics Image © 2007 GeoContent

Structure of talk

- 1. Global Mg supplies and deficiency risks
- 2. National Mg intakes
- 3. Breeding potential in crops (forage grass and brassica)
- 4. Breeding vs fertilisers?

Global Mg supplies

<u>Supply = Food Balance Sheet * Food Composition Table</u>

Food & Agriculture Organization Food Balance Sheets (FBSs): 94 food items, 145 countries (>1m), 1992-2011 (FAOSTAT)

FBSs are net supply at household level, adjusted for edible portion

Food Composition Table (FCT) for Mg from US Dept. of Agriculture

Deficiency risks based on a 'cut-point' defined by requirements, assuming 25% variation in intake (inter-individual)

Plant Soil DOI 10.1007/s11104-012-1388-z	Physiologia Plantarum					
REGULAR ARTICLE	Physiologia Plantarum 151: 208–229. 2014	An International Journal for Plant Bio				
Risk of dietary magnesium deficiency is low in most African countries based on food supply data	Dietary mineral supplies in Africa					
Edward J. M. Joy • Scott D. Young • Colin R. Black • E. Louise Ander • Michael J. Watts •	Edward J. M. Joy ^{a,b,†} , E. Louise Ander ^{b,†} , Scott D. Young ^a , Colin R. Black ^a , Michael J. Watts ^b , Allan D. C. Chilimba ^c , Benson Chilima ^d , Edwin W. P. Siyame ^e , Alexander A. Kalimbira ^e , Rachel Hurst ^f , Susan J. Fairweather-Tait ^f , Alexander J. Stein ^g , Rosalind S. Gibson ^h , Philip J. White ⁱ and Martin R. Broadley ^{a,*}					
Martin R. Broadley						

Estimated Average Requirement 'cut-point'

EAR = Estimated Average Requirement (L)RNI = (Lower) Reference Nutrient Intake

Estimated Average Requirement 'cut-point'

Global Mg supply (2011)

Mg supply (mg	<i>capita</i> ⁻¹ d ⁻¹	')		
340 - 478	478 - 587	587 - 715	715 -	944 No data

Global Mg deficiency risk (2011): WtdEAR=258 mg capita⁻¹ d⁻¹

Mg deficiency risk (%)

0 - 2 2 - 4 4 - 9 No data

Global Mg supply and deficiency risks (1992-2011)

Global Mg supply by food group (1992-2011): Africa

Global Mg supply by food group (1992-2011): Americas

Global Mg supply by food group (1992-2011): Asia

Global Mg supply by food group (1992-2011): Europe

Structure of talk

- 1. Global Mg supplies and deficiency risks
- 2. National Mg intakes
- 3. Breeding potential in crops (forage grass and brassica)
- 4. Breeding vs fertilisers?

National Mg supply (UK)

2008/09 - 2011/12

UK energy supply (FAO FBS) in 2011: 3414 kcal capita⁻¹ d⁻¹

UK Mg deficiency risk (FAO FBS) in 2011: 1.5% (~600 mg capita⁻¹ d⁻¹)

Mg intakes from rolling National Diet & Nutrition Survey (NDNS): 11% females, 16% males, 19-64 <LRNI 150/190 mg d⁻¹ 53% females, 28% males, 11-18 <LRNI ~190 mg d⁻¹

(Under?)-reported energy intakes from NDNS:

females 19-64:	1613 (455)
females 11-18:	1569 (423)

males 19-64:	2111 (617)
males 11-18:	1972 (518)

National Mg supply (Malawi)

Food data from Malawi Third Integrated Household Survey (IHS3)

>12,500 households interviewed in 2010-11

Food consumption module: households asked to recall foods consumed in past 7 d from 112 items (e.g. 'Maize ufa refined (fine flour)', 'Dried fish')

Dietary intake surveys in Malawi

MODULE G: FOOD CONSUMPTION OVER PAST ONE WEEK

		G01	G02	2 G03 How much in total did your household		G04		G05	G06		G07		1
	Over the past one week (7 days), did you					How much came from How much did you purchases? spend?		How much did you	How much came from own-		How much came from glits and other		
	or others in your household consume any							spend?					
> ff	11 ²			week?	veek?				production?		sources?		
T R	INCLUDE FOOD BOTH EATEN	YES1											
	COMMUNALLY IN THE HOUSEHOLD AND	NO2>> NEXT											
ATA NE	HOUSEHOLD MEMBERS.		ITEM					1.00					1
	Cereals, Grains and Cereal Products		CODE	QUANTITY	UNIT	QUANTITY	UNIT	МК	QUANTITY	UNIT	QUANTITY	UNIT	
	Malze ufa mgalwa (normal flour)		101										CODES FOR UNIT:
3	Maize ufa refined (fine flour)		102										KILOGRAMME
4	Maize ufa madeya (bran flour)		103										90 KG. BAG
5	Maize grain (not as ufa)		104										PAIL (SMALL)
6	Green malze		105										No. 10 PLATE
7	Rice		106										BUNCH
8	Finger millet (mawere)		107										HEAP 10
9	Sorghum (mapira)		108										BASKET (DENGU)
10	Pearl millet (mchewere)		109										(SHELLED) 12 BASKET (DENGU)
11	Wheat flour		110										(UNSHELLED) 13
12	Bread		111										(UNSHELLED) 14
13	Buns, scones		112										CUP 16
14	Biscuits		113										TIN
15	Spaghetti, macaroni, pasta		114										MILLILITRE 19
16	Breakfast cereal		115										BASIN
17	Infant feeding cereals		116										SATCHET/TUBE22 OTHER (SPECIFY). 23
18	Other (specify)		117										
19	oots, Tubers, and Plantains												
20	Cassava tubers		201										
21	Cassava flour		202										
22	White sweet potato		203										
23	Orange sweet potato		204										
24	Irish potato		205]
25	Potato crisps		206]
26	Plantain, cooking banana		207]
27	Cocoyam (masimbl)		208]
28	Other (specify)		209										J

National Mg supply (Malawi)

Food data from Malawi Third Integrated Household Survey (IHS3)

>12,500 households interviewed in 2010-11

Food consumption module: households asked to recall foods consumed in past 7 d from 112 items (e.g. 'Maize ufa refined (fine flour)', 'Dried fish')

Enumerators recorded the amount consumed and source (i.e. 'own production', 'bought' or 'gift')

Units include standard metrics (grams, litres etc.) and local units (small plate, large plate, small bucket, large bucket, basin etc.)

Food composition data from Joy et al. (2015)

Food composition data (Malawi): 97 food types

Joy et al. (2015)

Food composition data (Malawi): maize

Int. J. Vitam. Nutr. Res., 82 (3), 2012, X-X

Original Communication

Food composition data (Malawi)

Risk of Mg deficiency is >> than predicted by FBSs

quintil Frequency (arbitrary units) 5 StDev Mean Ν 0.9153 1812 1.728 2.114 0.9895 2092 1.050 2203 2.351 2.521 1.042 2316 2.766 1.050 2607 0.8 1.6 2.4 3.2 4.0 4.8 -0.0 Household dietary Mg Supply/household RDA

Mg intakes *versus* income in Malawi

Structure of talk

- 1. Global Mg supplies and deficiency risks
- 2. National Mg intakes
- 3. Breeding potential in crops (forage grass and brassica)
- 4. Breeding vs fertilisers?

Breeding potential in forage grasses

Hypomagnesaemia-related conditions long-recognised in ruminants

Cows: 1-4% in Europe affected, 20-30% within individual herds

Sheep: 20-40 hypomagnesaemia outbreaks per year in the UK

Mg absorbed through rumen wall in ruminants, not in small intestine

Can occur at lactation due to increased Mg requirements; accompanied by / confused with, hypocalcaemia (milk fever), affecting ~7-8% of UK cows

Tetany (grass staggers) occurs in spring-time when grasses have low dry matter, high protein, high soluble carbohydrate, high K⁺

Forages low in Mg due to genotypic factors, soil conditions / other cations

Feed supplements and fertilisers (calcined magnesite, MgO/MgCO₃; kieserite, MgSO₄; dolomitic limestone, CaCO₃.MgCO₃) used at high rates / costs

Grasses have inherently low Mg concentrations

- All other taxa (e.g. roses, legumes)
- Caryophyllales (e.g. sugar beet, carnation)
- Poales (e.g. the grass / cereal family, Poaceae)
- Asterales (e.g. the daisy / sunflower family Asteraceae)

MR Broadley et al. (2004). Journal of Experimental Botany, 55, 321-336.

Assessing variation in [Mg] among four grass species

Lolium perenne (n=280) Lolium multiflorum (n=17)

Hybrid ryegrass (n=101)

Festuca arundinacea (n=10)

Assessing variation in [Mg] among four grass species

Multiple cuts taken in 2013 and 2014

Multiple cuts taken in 2013 and 2014

Up to two-fold variation in leaf Mg concentrations among four species of forage grass

Arithmetic cultivar-means for all plots, \pm 1 standard deviation.

Consistency in leaf Mg concentrations and leaf 'Tetany Index' at different sites

55 varieties of forage grass (varietal means); a Tetany Index >2.2. is considered to lead to higher risks of hypomagnesaemia

Breeding potential in forage grasses – revisited?

Binnie, R.C., Johnston, D.T. and Chestnutt, D.M.B. (1996) The effect of a highmagnesium perennial ryegrass variety on the magnesium status of sheep. *Grass Forage Sci.* 51: 456-463

Crawford, R.J., Massie, M.D., Sleper, D.A. and Mayland, H.F. (1998) Use of an experimental high-magnesium tall fescue to reduce grass tetany in cattle. *J. Prod. Agric.* 11: 491-496

Moseley, G. and Baker, D.H. (1991) The efficacy of a high magnesium grass cultivar in controlling hypomagnesaemia in grazing animals. *Grass Forage* <u>Sci. 46: 375-380</u>

Breeding potential in Brassica

Phylogenetic analyses among angiosperms

Broadley MR et al. (2003). *Journal of Experimental Botany*, 54, 1431-1446 White PJ & Broadley MR (2003). *Annals of Botany*, 92, 487-511 Broadley MR et al. (2004). *Journal of Experimental Botany*, 55, 321-336 White PJ et al. (2004). *Journal of Experimental Botany*, 55, 1927-1937 Watanabe T et al. (2007). *New Phytologist*, 174, 516-523

Brassica have inherently high leaf Mg concentrations

Forward screens of chemically-mutagenised Brassica

Brassica rapa R-o-18 tilling population (3464 M₂s, 4 WT, n=5)

Leaf mineral concentration 3*siblings, ~30 elements)

Slightly-delayed flowering...

M₄ generation plants growing in the glasshouse

Structure of talk

- 1. Global Mg supplies and deficiency risks
- 2. National Mg intakes
- 3. Breeding potential in crops (forage grass and brassica)
- 4. Breeding vs fertilisers?

Breeding or fertilisers for humans ?

Magnesium intake (all sources, mg d⁻¹)

Breeding or fertilisers for humans?

Numbers of UK adults <LRNI to >LRNI as a consequence of intervention (2002 data)

+2 veg. +50% biofort. both

Magnesium

1.4m

2.0m

4.0m (75%)

Broadley MR, White PJ. (2010). Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? *Proceedings of the Nutrition Society*, 69, 601-612.

Acknowledgements

Benson Chilima Allan Chilimba Susan Fairweather-Tait **Ros Gibson** Jelita Gondwe John Hammond **Rory Hayden Rachel Hurst Dalitso Kang'ombe** Alexander Kalimbira Nigel Kendall **Graham King** Joachim Lammel Alexander Stein Edwin Siyame Lolita Wilson

Malawi Ministry of Health Malawi Ministry of Agriculture and Food Security **University of East Anglia** University of Otago, New Zealand **Malawi Ministry of Health** University of Reading University of Nottingham **University of East Anglia** Malawi Ministry of Health Lilongwe University of Agriculture & Natural Resources, Malawi **University of Nottingham** Southern Cross University, Lismore, Australia Yara GmbH, Germany **Agricultural Economist** Lilongwe University of Agriculture & Natural Resources, Malawi **University of Nottingham**

Department for International Development

DFI

